Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Adv Healthc Mater ; : e2304600, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491859

RESUMO

The emergence of multidrug-resistant (MDR) bacteria poses a significant challenge to global health. Due to a shortage of antibiotics, alternative therapeutic strategies are urgently needed. Unfortunately, colistin, the last-resort antibiotic, has unavoidable nephrotoxicity and hepatotoxicity, and its single killing mechanism is prone to drug resistance. To address this challenge, a promising combinatorial approach that includes colistin, a membrane-disrupting antimicrobial agent, and chelerythrine (CHE), a FtsZ protein inhibitor is proposed. This approach significantly reduces antibiotic dose and development of resistance, leading to almost complete inactivation of MDR pathogens in vitro. To address solubility issues and ensure transport, the antimicrobial hydrogel system LNP-CHE-CST@hydrogel, which induced reactive oxygen species (ROS) and apoptosis-like cell death by targeting the FtsZ protein, is used. In an in vivo mouse skin infection model, the combination therapy effectively eliminated MDR bacteria within 24 h, as monitored by fluorescence tracking. The findings demonstrate a promising approach for developing multifunctional hydrogels to combat MDR bacterial infections.

2.
ACS Nano ; 18(4): 3134-3150, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236616

RESUMO

Immunotherapy is restricted by a complex tumor immunosuppressive microenvironment (TIM) and low drug delivery efficiency. Herein, a multifunctional adjuvant micelle nanosystem (PPD/MPC) integrated with broken barriers and re-education of three classes of immune-tolerant cells is constructed for cancer immunotherapy. The nanosystem significantly conquers the penetration barrier via the weakly acidic tumor microenvironment-responsive size reduction and charge reversal strategy. The detached core micelle MPC could effectively be internalized by tumor-associated macrophages (TAMs), tumor-infiltrating dendritic cells (TIDCs), and myeloid-derived suppressor cells (MDSCs) via mannose-mediated targeting endocytosis and electrostatic adsorption pathways, promoting the re-education of immunosuppressive cells for allowing them to reverse from pro-tumor to antitumor phenotypes by activating TLR4/9 pathways. This process in turn leads to the remodeling of TIM. In vitro and in vivo studies collectively indicate that the adjuvant micelle-based nanosystem not only relieves the intricate immune tolerance and remodels TIM via reprogramming the three types of immunosuppressive cells and regulating the secretion of relevant cytokines/immunity factors but also strengthens immune response and evokes immune memory, consequently suppressing the tumor growth and metastasis.


Assuntos
Micelas , Neoplasias , Humanos , Imunoterapia , Imunossupressores/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Neoplasias/terapia , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140231

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Animais , Camundongos , Dinoprostona , MicroRNAs/genética , Bile/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Hidroxiprostaglandina Desidrogenases/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
Small ; : e2309589, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105589

RESUMO

Achieving ultrabright fluorogens is a key issue for fluorescence-guided surgery (FGS). Fluorogens with aggregation-induced emission (AIEgens) are potential agents for FGS on the benefit of the bright fluorescence in physiological conditions. Herein, the fluorescence brightness of AIEgen is further improved by preparing the nanoparticle using a polystyrene-based matrix and utilizing it for tumor FGS with a high signal-to-background ratio. After encapsulating AIEgen into polystyrene-poly (ethylene glycol) (PS-PEG), the fluorescence intensity of the prepared AIE@PS-PEG nanoparticles is multiple times that of nanoparticles in 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly (ethylene glycol) (DSPE-PEG), a commonly used polymer matrix for nanoparticle preparation. Molecular dynamics simulations suggest that higher free energy is required for the outer rings of AIEgen to rotate in polystyrene than in the DSPE, indicating that the benzene rings in polystyrene can restrict the intramolecular motions of AIEgen better than the alkyl chain in DSPE-PEG. Fluorescence correlation microscopy detections suggest that the triplet excited state of AIEgens is less in PS-PEG than in DSPE-PEG. The restricted intramolecular motions and suppressed triplet excited state result in ultrabright AIE@PS-PEG nanoparticles, which are more conducive to illuminating tumor tissues in the intestine for FGS. The illumination of metastatic tumors in lungs by AIE@PS-PEG nanoparticles is also tried.

5.
Asian J Pharm Sci ; 18(6): 100874, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38149060

RESUMO

Hepatocellular carcinoma (HCC) is one of most common and deadliest malignancies. Celastrol (Cel), a natural product derived from the Tripterygium wilfordii plant, has been extensively researched for its potential effectiveness in fighting cancer. However, its clinical application has been hindered by the unclear mechanism of action. Here, we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and anti-tumor capacity by developing a Cel-based liposomes in HCC. We demonstrated that Cel selectively targets the voltage-dependent anion channel 2 (VDAC2). Cel directly binds to the cysteine residues of VDAC2, and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore (mPTP) function. We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells. Moreover, coencapsulation of Cel into alkyl glucoside-modified liposomes (AGCL) improved its antitumor efficacy and minimized its side effects. AGCL has been shown to effectively suppress the proliferation of tumor cells. In a xenograft nude mice experiment, AGCL significantly inhibited tumor growth and promoted apoptosis. Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death, while the Cel liposomes enhance its targetability and reduces side effects. Overall, Cel shows promise as a therapeutic agent for HCC.

6.
J Epidemiol Glob Health ; 13(4): 870-885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889436

RESUMO

BACKGROUND: Immense attention has been given to the outcome of COVID-19 infection. However, comprehensive studies based on large populational cohort with long-term follow-up are still lacking. This study aimed to investigate the risk of various short-term comorbidities (within one month) and long-term sequelae (above one month) after COVID-19 infection. METHODS: In this large prospective cohort study with 14 months follow-up information based on UK biobank, we included 16,776 COVID-19-positive participants and 58,281 COVID-19-negative participants matched for comparison. The risk of each comorbidity and sequela was evaluated by multivariable logistic regression analysis and presented as hazard ratio (HR) and 95% confidence interval (95% CI). RESULTS: COVID-19-positive individuals had a higher risk of 47 types of comorbidities within one month following COVID-19 infection, especially those who were older, male, overweight/obese, ever-smoked, with more pre-existing comorbidities and hospitalized. About 70.37% of COVID-19 patients with comorbidities had more than one co-occurring comorbidities. Additionally, only 6 high-risk sequelae were observed after one month of COVID-19 infection, and the incidence was relatively low (< 1%). CONCLUSION: In addition to long-term sequelae following COVID-19 infection, plenty of comorbidities were observed, especially in patients with older age, male gender, overweight/obese, more pre-existing comorbidities and severe COVID-19, indicating that more attention should be given to these susceptible persons within this period.


Assuntos
COVID-19 , Humanos , Masculino , COVID-19/epidemiologia , Estudos Prospectivos , Sobrepeso/epidemiologia , SARS-CoV-2 , Comorbidade , Progressão da Doença , Obesidade/epidemiologia
7.
Angew Chem Int Ed Engl ; 62(48): e202311224, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37840434

RESUMO

Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.

8.
Phytomedicine ; 119: 155016, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598639

RESUMO

BACKGROUND: Liver fibrosis caused by chronic liver injury, eventually develops into liver cirrhosis and hepatocellular carcinoma. Currently, there are no effective drugs to relieve liver fibrosis due to the lack of molecular pathogenesis characteristics. Former research demonstrates that the hepatic immune microenvironment plays a key role in the pathogenesis of liver fibrosis, thus macrophages are important immune cells in the liver. Our previous study has found that IDO1 plays an important role in the liver immune microenvironment. CRG is a gallic acid tannin found in medicinal plants of many ethnicities that protects against inflammation, tumors and chronic liver disease. However, the mechanism of by which CRG mediates the interaction of IDO1 with macrophages during hepatic immune maturation is not clear. PURPOSE: To investigate the regulatory mechanism of CRG in liver fibrosis and the intrinsic relationship between IDO1 and macrophage differentiation. METHODS: Zebrafish, RAW264.7 cells and mice were used in the study. IDO1 overexpression and knockdown cell lines were constructed using lentiviral techniques. RESULTS: We discovered that CRG remarkably reduced the AST and ALT serum levels. Histological examination revealed that CRG ameliorates CCL4-induced liver fibrosis and depressed the expression of α-SMA, Lamimin, Collagen-Ι and fibronectin. Besides, we found that CRG promoted increased MerTK expression on partly macrophages. Interestingly, in vitro, we found that CRG suppressed IDO1 expression and regulated macrophage differentiation by upregulating CD86, CD80 and iNOS, while downregulating CD206, CD163, IL-4 and IL-10 expression. Additionally, we found that CRG could inhibit hepatic stellate cell activation by direct or indirect action. CONCLUSION: Our findings suggest that CRG alleviates liver fibrosis by mediating IDO1-mediated M2 macrophage repolarization.


Assuntos
Neoplasias Hepáticas , Peixe-Zebra , Animais , Camundongos , Cirrose Hepática/tratamento farmacológico , Macrófagos , Microambiente Tumoral
9.
Hepatology ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505213

RESUMO

ABSTRACT AND AIM: Cholangiocarcinoma (CCA) is a highly aggressive and lethal cancer that originates from the biliary epithelium. Systemic treatment options for CCA are currently limited, and the first targeted drug of CCA, pemigatinib, emerged in 2020 for CCA treatment by inhibiting FGFR2 phosphorylation. However, the regulatory mechanism of FGFR2 phosphorylation is not fully elucidated. APPROACH AND RESULTS: Here we screened the FGFR2-interacting proteins and showed that protein tyrosine phosphatase (PTP) N9 interacts with FGFR2 and negatively regulates FGFR2 pY656/657 . Using phosphatase activity assays and modeling the FGFR2-PTPN9 complex structure, we identified FGFR2 pY656/657 as a substrate of PTPN9, and found that sec. 14p domain of PTPN9 interacts with FGFR2 through ACAP1 mediation. Coexpression of PTPN9 and ACAP1 indicates a favorable prognosis for CCA. In addition, we identified key amino acids and motifs involved in the sec. 14p-APCP1-FGFR2 interaction, including the "YRETRRKE" motif of sec. 14p, Y471 of PTPN9, as well as the PH and Arf-GAP domain of ACAP1. Moreover, we discovered that the FGFR2 I654V substitution can decrease PTPN9-FGFR2 interaction and thereby reduce the effectiveness of pemigatinib treatment. Using a series of in vitro and in vivo experiments including patient-derived xenografts (PDX), we showed that PTPN9 synergistically enhances pemigatinib effectiveness and suppresses CCA proliferation, migration, and invasion by inhibiting FGFR2 pY656/657 . CONCLUSIONS: Our study identifies PTPN9 as a negative regulator of FGFR2 phosphorylation and a synergistic factor for pemigatinib treatment. The molecular mechanism, oncogenic function, and clinical significance of the PTPN9-ACAP1-FGFR2 complex are revealed, providing more evidence for CCA precision treatment.

10.
Hum Brain Mapp ; 44(12): 4590-4604, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37347619

RESUMO

Anatomical and functional heterogeneous substantia nigra (SN) has been extensively studied in humans and animals like rhesus monkeys given its crucial role in modulating a broad range of behaviors. Increasingly important cross-species research of SN may require connectionally homogeneous and homologous subregions of SN as objective and stable starting points from which the evolutionary characteristics of brain could be inspected. However, existing atlases of SN were all inaccurate mappings as a cross-species connectome atlas due to inadequate homology constraint during their constructions, and arbitrary paired use of these atlases might cause unreliable findings. In this study, a reliable blind-source cross-species parcellation of SN was developed based on the following rationale: striatonigrostriatal circuits form major structure of nigral connectivity; different nigral components have unique striatonigrostriatal connectivity; and inter-species corresponding human and macaque nigral components have similar striatonigrostriatal connectivity. Specifically, all voxels in human and macaque SN were grouped together and then classified based on inter-species identically characterized striatonigrostriatal connectivity attributes. Our results delineated a pars compacta-pars reticulate-like parcellation and further demonstrated its reliability by illustrating best-matched whole-brain structural and functional connectivity profiles of inter-species corresponding nigral subregions. Detailed inter-species and inter-regional differences in multi-aspect connectivities of these nigral subregions were inspected. It is expected that this cross-species connectome atlas of SN can offer biologically reliable cornerstones and important information to facilitate future cross-species research.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Substância Negra/diagnóstico por imagem , Conectoma/métodos , Macaca mulatta
12.
Commun Biol ; 6(1): 581, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258640

RESUMO

To date, reliable biomarkers remain unclear that could link functional connectivity to patients' symptoms for detecting and predicting the process from normal aging to Alzheimer's disease (AD) in elderly people with specific genotypes. To address this, individual-specific functional connectivity is constructed for elderly participants with/without APOE ε4 allele. Then, we utilize recursive feature selection-based machine learning to reveal individual brain-behavior relationships and to predict the symptom transition in different genotypes. Our findings reveal that compared with conventional atlas-based functional connectivity, individual-specific functional connectivity exhibits higher classification and prediction performance from normal aging to AD in both APOE ε4 groups, while no significant performance is detected when the data of two genotyping groups are combined. Furthermore, individual-specific between-network connectivity constitutes a major contributor to assessing cognitive symptoms. This study highlights the essential role of individual variation in cortical functional anatomy and the integration of brain and behavior in predicting individualized symptoms.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Idoso , Apolipoproteína E4/genética , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Genótipo , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
13.
Phytother Res ; 37(9): 4117-4132, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246830

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy affecting many people worldwide. Baicalin is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi. It can effectively inhibit the occurrence and development of HCC. Nonetheless, the mechanism through which Baicalin inhibits HCC growth and metastasis remain unknown. This work discovered that Baicalin inhibited HCC cell proliferation, invasion, metastasis while inducing cell cycle arrest at the G0/G1 phase and apoptosis. In vivo HCC xenograft results indicated that Baicalin inhibited HCC growth. Western blotting analysis indicated that Baicalin suppressed the expressions of ROCK1, p-GSK-3ß, and ß-catenin, whereas it up-regulated the expressions of GSK-3ß and p-ß-catenin. Baicalin also reduced the expressions of Bcl-2, C-myc, Cyclin D1, MMP-9, and VEGFA, while increasing the expression of Bax. Molecular docking revealed that Baicalin docked in the binding site of the ROCK1 agonist, with a binding energy of -9 kcal/mol between the two. In addition, lentivirus-mediated suppression of ROCK1 expression improved the inhibitory effect of Baicalin on the proliferation, invasion, and metastasis of HCC and the expression of proteins associated with ROCK1/GSK-3ß/ß-catenin signaling pathway. Moreover, restoring ROCK1 expression decreased the anti-HCC efficacy of Baicalin. These findings suggest that Baicalin may decrease HCC proliferation and metastasis by suppressing ROCK1/GSK-3ß/ß-catenin signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Transdução de Sinais , Flavonoides/farmacologia , Proliferação de Células , Quinases Associadas a rho
14.
Cell ; 186(10): 2193-2207.e19, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098343

RESUMO

Somatic hypermutation (SHM), initiated by activation-induced cytidine deaminase (AID), generates mutations in the antibody-coding sequence to allow affinity maturation. Why these mutations intrinsically focus on the three nonconsecutive complementarity-determining regions (CDRs) remains enigmatic. Here, we found that predisposition mutagenesis depends on the single-strand (ss) DNA substrate flexibility determined by the mesoscale sequence surrounding AID deaminase motifs. Mesoscale DNA sequences containing flexible pyrimidine-pyrimidine bases bind effectively to the positively charged surface patches of AID, resulting in preferential deamination activities. The CDR hypermutability is mimicable in in vitro deaminase assays and is evolutionarily conserved among species using SHM as a major diversification strategy. We demonstrated that mesoscale sequence alterations tune the in vivo mutability and promote mutations in an otherwise cold region in mice. Our results show a non-coding role of antibody-coding sequence in directing hypermutation, paving the way for the synthetic design of humanized animal models for optimal antibody discovery and explaining the AID mutagenesis pattern in lymphoma.


Assuntos
Citidina Desaminase , Hipermutação Somática de Imunoglobulina , Animais , Camundongos , Anticorpos/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , DNA de Cadeia Simples , Mutação , Evolução Molecular , Regiões Determinantes de Complementaridade/genética , Motivos de Nucleotídeos
15.
Dig Endosc ; 35(7): 857-865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36905288

RESUMO

OBJECTIVES: The disposable esophagogastroduodenoscopy (EGD) system is a novel endoscopic device which is highly portable and is designed to eliminate the risk of cross-infection caused by reusable EGD. This study aimed to investigate the feasibility and safety of disposable EGD in emergency, bedside, and intraoperative settings. METHODS: This was a prospective, single-center, noncomparative study. Disposable EGD was used for emergency, bedside, and intraoperative endoscopies in 30 patients. The primary end-point was the technical success rate of the disposable EGD. Secondary end-points included technical performance indicators including clinical operability, image quality score, procedure time, the incidence of device malfunction and/or failure, and the incidence of adverse events. RESULTS: A total of 30 patients underwent diagnosis and/or treatment with disposable EGD. Therapeutic EGD was performed on 13/30 patients, including hemostasis (n = 3), foreign body retrieval (n = 6), nasoenteric tube placement (n = 3), and percutaneous endoscopic gastrostomy (n = 1). The technical success rate was 100%: all procedures and indicated interventions were completed without changing to a conventional upper endoscope. The mean image quality score obtained immediately after procedure completion was 3.72 ± 0.56. The mean (± SD) procedure time was 7.4 (± 7.6) min. There were no device malfunctions or failures, device-related adverse events, or overall adverse events. CONCLUSION: The disposable EGD may be a feasible alternative to the traditional EGD in emergency, bedside, and intraoperative settings. Preliminary data show that it is a safe and effective tool for diagnosis and treatment in emergency and bedside upper gastrointestinal cases. TRIAL REGISTRATION: Chinese Clinical Trial Registry (Trial ID: ChiCTR2100051452, https://www.chictr.org.cn/showprojen.aspx?proj=134284).


Assuntos
Endoscopia do Sistema Digestório , Endoscopia , Humanos , Projetos Piloto , Estudos Prospectivos , Endoscopia do Sistema Digestório/métodos , Intubação Gastrointestinal
16.
Front Neurosci ; 17: 1118340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998725

RESUMO

With the recent development of deep learning, the regression, classification, and segmentation tasks of Computer-Aided Diagnosis (CAD) using Non-Contrast head Computed Tomography (NCCT) for spontaneous IntraCerebral Hematoma (ICH) have become popular in the field of emergency medicine. However, a few challenges such as time-consuming of ICH volume manual evaluation, excessive cost demanding patient-level predictions, and the requirement for high performance in both accuracy and interpretability remain. This paper proposes a multi-task framework consisting of upstream and downstream components to overcome these challenges. In the upstream, a weight-shared module is trained as a robust feature extractor that captures global features by performing multi-tasks (regression and classification). In the downstream, two heads are used for two different tasks (regression and classification). The final experimental results show that the multi-task framework has better performance than single-task framework. And it also reflects its good interpretability in the heatmap generated by Gradient-weighted Class Activation Mapping (Grad-CAM), which is a widely used model interpretation method, and will be presented in subsequent sections.

17.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36790856

RESUMO

Potential miRNA-disease associations (MDA) play an important role in the discovery of complex human disease etiology. Therefore, MDA prediction is an attractive research topic in the field of biomedical machine learning. Recently, several models have been proposed for this task, but their performance limited by over-reliance on relevant network information with noisy graph structure connections. However, the application of self-supervised graph structure learning to MDA tasks remains unexplored. Our study is the first to use multi-view self-supervised contrastive learning (MSGCL) for MDA prediction. Specifically, we generated a learner view without association labels of miRNAs and diseases as input, and utilized the known association network to generate an anchor view that provides guiding signals for the learner view. The graph structure was optimized by designing a contrastive loss to maximize the consistency between the anchor and learner views. Our model is similar to a pre-trained model that continuously optimizes upstream tasks for high-quality association graph topology, thereby enhancing the latent representation of association predictions. The experimental results show that our proposed method outperforms state-of-the-art methods by 2.79$\%$ and 3.20$\%$ in area under the receiver operating characteristic curve (AUC) and area under the precision/recall curve (AUPR), respectively.


Assuntos
Aprendizado de Máquina , MicroRNAs , Humanos , Área Sob a Curva , MicroRNAs/genética , Curva ROC
18.
BMJ ; 380: e072133, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746459

RESUMO

OBJECTIVES: To address whether sparing the medial retropharyngeal lymph node (MRLN) region from elective irradiation volume provides non-inferior local relapse-free survival versus standard radiotherapy in patients with nasopharyngeal carcinoma. DESIGN: Open-label, non-inferiority, multicentre, randomised, phase 3 trial. SETTING: Three Chinese hospitals between 20 November 2017 and 3 December 2018. PARTICIPANTS: Adults (18-65 years) with newly diagnosed, non-keratinising, non-distant metastatic nasopharyngeal carcinoma without MRLN involvement. INTERVENTIONS: Randomisation was done centrally by the Clinical Trials Centre at Sun Yat-sen University Cancer Center. Eligible patients were randomly assigned (1:1; block size of four) to receive MRLN sparing radiotherapy or standard radiotherapy (both medial and lateral retropharyngeal lymph node groups), and stratified by institution and treatment modality as follows: radiotherapy alone; concurrent chemoradiotherapy; induction chemotherapy plus radiotherapy or concurrent chemoradiotherapy. MAIN OUTCOME MEASURES: Non-inferiority was met if the lower limit of the one sided 97.5% confidence interval of the absolute difference in three year local relapse-free survival (MRLN sparing radiotherapy minus standard radiotherapy) was greater than -8%. RESULTS: 568 patients were recruited: 285 in the MRLN sparing radiotherapy group; 283 in the standard radiotherapy group. Median follow-up was 42 months (interquartile range 39-45), intention-to-treat analysis showed that the three year local relapse-free survival of the MRLN sparing radiotherapy group was non-inferior to that of the standard radiotherapy group (95.3% v 95.5%, stratified hazard ratio 1.04 (95% confidence interval 0.51 to 2.12), P=0.95) with a difference of -0.2% ((one sided 97.5% confidence interval -3.6 to ∞), Pnon-inferiority<0.001). In the safety set (n=564), the sparing group had a lower incidence of grade ≥1 acute dysphagia (25.5% v 35.1%, P=0.01) and late dysphagia (24.0% v 34.3%, P=0.008). Patient reported outcomes at three years after MRLN sparing radiotherapy were better in multiple domains after adjusting for the baseline values: global health status (mean difference -5.6 (95% confidence interval -9.1 to -2.0), P=0.002), role functioning (-5.5 (-7.4 to -3.6), P<0.001), social functioning (-6.2 (-8.9 to -3.6), P<0.001), fatigue (7.9 (4.0 to 11.8), P<0.001), and swallowing (11.0 (8.4 to 13.6), P<0.001). The difference in swallowing scores reached clinical significance (>10 points difference). CONCLUSION: Compared with standard radiotherapy, MRLN sparing radiotherapy showed non-inferiority in terms of risk of local relapse with fewer radiation related toxicity and improved patient reported outcomes in patients with non-metastatic nasopharyngeal carcinoma. TRIAL REGISTRATION: ClinicalTrials.gov NCT03346109.


Assuntos
Transtornos de Deglutição , Neoplasias Nasofaríngeas , Adulto , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfonodos/patologia , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Recidiva Local de Neoplasia/radioterapia
19.
Eur Arch Otorhinolaryngol ; 280(3): 1455-1465, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36348098

RESUMO

PURPOSE: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. METHODS: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database were compared to patients with oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by tenfold cross validation. RESULTS: A total of 3318 GZSCC, 10792 OPSCC and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) were the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. CONCLUSIONS: GZSCC patients had distinct clinical characteristics and prognosis compared with OPSCC and OCSCC, integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Neoplasias Orofaríngeas/patologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Carcinoma de Células Escamosas/patologia , Prognóstico , Boca/patologia
20.
Redox Biol ; 59: 102559, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502724

RESUMO

Alcoholic liver disease (ALD) is associated with hepatic inflammatory activation and iron overload. The receptor for advanced glycation end products (RAGE) is an important metabolic mediator during the development of ALD. The aim of this study was to determine the effect of RAGE on iron homeostasis in ALD. We found increased circulating transferrin, hepcidin and ferritin in ALD patients and positively correlated with RAGE level. RAGE knockout (RAGE-/-) and wild-type mice were subjected to chronic alcoholic feeding for 6 weeks to induce ALD, and RAGE inhibitor, iron chelator or lipid peroxidation inhibitor were administered. We showed that chronic alcohol administration triggered hepatic steatosis, inflammation, and oxidative stress, which were eliminated by deficiency or inhibition of RAGE. Surprisingly, pathways of hepatic iron metabolism were significantly altered, including increased iron uptake (Tf/TfR) and storage (Ferritin), as well as decreased iron export (FPN1/Hepcidin). In vitro experiments confirmed that RAGE had different effects on the mechanism of iron metabolism of hepatocytes and macrophages respectively. In conclusion, our data revealed preclinical evidence for RAGE inhibition as an effective intervention for alleviating alcohol-induced liver injury.


Assuntos
Ferro , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol , Ferritinas/metabolismo , Hepcidinas/genética , Ferro/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...